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It is shown that in flow past a system of spheres of radius a situated at 
the nodes of a cubic lattice with the period b in the direction of one 
of the principal translations of the lattice under the condition (a/b) �9 
�9 p ~/s << 1 (P is the Pgclet number, p >> 1), the concentration of dis- 
solved material absorbed by the sphere surfaces diminishes logarithmi- 
cally at distances large compared with b, but small compared with 
L = PbZ/4va. At distances considerably larger than L, the decrease is 
described by an exponential law which coincides with the law of con- 
centration decrease at distances much larger than b in the case of a 
spatially homogeneous distribution of the spheres�9 We consider the 
flow of an incompressible fluid with the velocity U past a system of 
spheres of radius a. We assume that the Reynolds number R = Ua/u 
(where v, the kinematic viscosity coefficient, is much larger than 
unity). Dissolved in the fluid is a material of concentration c which 
is absorbed by the sphere surfaces. The diffusion coefficient D is as- 
sumed to be sufficiently small for the Pgelet number P = Ua/D to be 
much larger than unity. The spheres are situated at the nodes of a 
cubic lattice with the period b. As will be shown below, it is necessary 
that P(a/b) s << 1. Under these assumptions the concentration varies in 
a thin (of the order aP'~/s) diffusion layer near the surface of each 
sphere. A diffusion wake is formed behind each sphere. The transverse 
dimensions of this wake for a sufficiently widely spaced lattice (aP 1/s << 
<<b) exceed the effective thickness of the diffusion boundary layer, 
which enables us to reduce the problem of concentration absorption on 
the surface of the system of spheres to the problem considered by Levich 
[1] concerning the convective diffusion of a material of constant con- 
stant concentration flowing past a single sphere. 

Hasimoto [2] considers the solution of the Stokes equation describing 
the motion of a viscous fluid past an array of spheres situated at the 
nodes of a cubic lattice. However, he does not give an expression for 
the velocity field applicable near the surface of some single sphere 
which is necessary to the solution of the diffusion problem. 

In the method of Lamb [3] (w and Burgers [4], in dealing with the 
flow of a viscous stream past a single sphere, one considers the equation 
of motion in space, including the interior of the sphere, and not just 
the solution of the equation in the space outside the sphere with bound- 
ary conditions at the sphere surface. At the center of the sphere one 
places a concentrated force and a system of multipoles whose magnitude 
is chosen in such a way as to ensure fulfillment of the required boundary 
conditions. 

This idea of introducing an effective potential is used in [2] to find the 
velocity field of a fluid flowing past an array of spheres. We propose a 
treatment of the effective potential method somewhat different from 
that of [2]. 

w We b e g i n  w i t h  t h e  e q u a t i o n  

~Av = grad p + (Fo + a~FaA + . . . ) ~ 6 ( r  ~ rn),(1.1) 
n 

d i v v =  O ( rn=  n a q - m b +  le) , (1.2) 

H e r e  v i s  t h e  v e l o c i t y  o f  t h e  f l u id  a t  t h e  p o i n t  r ;  

i s  t h e  d y n a m i c  v i s c o s i t y  c o e f f i c i e n t ;  p i s  t h e  p r e s -  

s u r e ;  r n i s  t h e  r a d i u s - v e c t o r  of  t h e  n - t h  n o d e  of  t h e  

l a t t i c e  (n, m ,  l = 0, 1, 2 . . . .  ). The  d e n s i t y  of  t h e  

f o r c e  e x e r t e d  by  t h e  s p h e r e s  on  t h e  f lu id  w i l l  b e  s o u g h t  

in  t h e  f o r m  of  a s e r i e s  c o n t a i n i n g  t h e  6 - f u n c t i o n  and 

its derivatives with some constant coefficients F0, Fi, 
etc. Introduction of these terms enables us to find a 
combination of particular periodic solutions which 
satisfies the condition of vanishing of the velocity at 
the sphere surfaces. 

We shall then show that consideration of the first 
two terms of the series with the coefficients F 0 and 
F i enables us to pass to the Stokes solution for flew 
past a single sphere as a/b -~ 0. The smallness of the 
rejected terms means that the highest-order deriva- 
tives of the correction of the velocity field produced 
by all the spheres are small as compared with the 
corresponding derivatives of the correction of the 
velocity field produced by the nearest sphere, except 
in the neighborhood of the sphere around which the 
flow is being considered. The method is therefore 
a p p l i c a b l e  on ly  i f  a / b  << 1.  

A s s u m i n g  s u m m a t i o n  o v e r  t h e  r e c u r r i n g  G r e e k -  

l e t t e r  i n d i c e s ,  w e  c a n  w r i t e  t h e  r e q u i r e d  s o l u t i o n  

(as  in  [2]) i n  t h e  f o r m  

w h e r e  v a a r e  t h e  c o m p o n e n t s  of  t h e  v e l o c i t y  of  t h e  

f lu id ,  and v ~  a r e  t h e i r  l i m i t i n g  v a l u e s  f o r  a / b  ~ 0, 

& =  i_L_ Z '  @ e-~(k.r) ,  
H a  S 

k ~ 0  

5 S~ = -  ~ t  ~ e - ~" (k.r) (1.4) 
4~a s 

k~o 

H e r e  k i s  t h e  v e c t o r  o f  t h e  r e c i p r o c a l  l a t t i c e ,  w h i c h  

i s  r e l a t e d  to  t h e  v e c t o r s  of  t h e  ( o r i g i n a l )  l a t t i c e  by  the  

c o n d i t i o n s  (k. a) = n, (k.b) ---- m, (k.e) = l. 

We know (e.  g . ,  s e e  [2]) t h e  e x p a n s i o n  of  t h e  l a t t i c e  

s u m s  S1 and $2 in  t h e  n e i g h b o r h o o d  of  s m a l l  r to  w i th in  

t e r m s  o f  o r d e r  ( r / b )  a, 

8=~S1 02S~ r %  ~ t . 8 8  \ 
0r~0~ ,, = ~ + ~ ( !  + ~ - ) .  (1 .5 )  

S u b s t i t u t i n g  e x p a n s i o n  (1.5) i n to  Eq .  (1.3) and m a k i n g  

u s e  of  t h e  b o u n d a r y  c o n d i t i o n  v a -= 0 f o r  r = a ,  we  o b -  

t a i n  

8~tavo = = F,~ [n~'n ~ + 

+ 6~.~ (1 - -  3.76 a/b)] - -  FI~ (3n~n ~ - -  6~) 

(,~: - ,'~ / r) .  (1.6) 

E q u a t i n g  t h e  c o e f f i c i e n t s  o f  t h e  e q u a l  s p h e r i c a l  

h a r m o n i c s ,  w e  o b t a i n  

F.~ = 6nt~aU ~, F~ ~ = ~ a U  ~, 

Ur l ~)o ~ 
1 --  2.84 a / b (1 �9 
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Thus, in  the reg ion  r 3 << b ~, i . e . ,  in  the ne ighbor -  
hood of the i so la ted  sphere ,  the ve loc i ty  f ield of the 
fluid flowing pas t  the sys t em of sphe res  i s  given by 

v ~ = U~ [ 8 ~ - -  3(n~n ~-[- 8~) a] 4r + 

+ (3n~n, ~ - -  6~) a 3 / 4r 3] . (1.8) 

As expected, the ve loc i ty  field n e a r  the sur face  of 
the sphere  i s  s i m i l a r  to the ve loc i ty  field of a v i scous  
s t r e a m  flowing past  a s ingle  sphere ,  except that  the 
ve loc i ty  U of the oncoming s t r e a m  dif fers  f rom v0. 

If a 3 << b 3, then there  exis t s  a reg ion  where  r >> a 
and r 3 << b a and where  exp re s s ion  (1.8) s t i l l  holds .  F o r  
th is  r e a s o n  the ve loc i ty  of the s t r e a m  can be c o n s i d e r -  
ed cons tan t  and equal to U. 

w Before inves t iga t ing  convect ive  diffusion in  the 
s t r e a m  flowing pas t  an a r r a y  of spheres ,  let  us con-  
s ide r  the p r o b l e m  of convect ive  diffusion at the sur face  
of a s ingle  sphere  in  the way of a s t r e a m  of ve loc i ty  U. 

The equation of convect ive  diffusion is  

v V c = D Ac . (2.1) 

In spher ica l  coord ina tes  the ve loc i ty  components  
Vr, v 0 can be exp re s sed  in  t e r m s  of the s t r e a m  func-  
t ion ~, 

Y r - -  r='sinO O0 ' VO ~ - -  r sm 0 Or 

q ) = - - l / 2 U s i n 2 0 ( r e - - a / 2 a r  + ~ /~aa / r )  . (2.2) 

Fol lowing Levich [1], we r e t a i n  only the mos t  e s s e n -  
t ia l  t e r m s  in the equat ion for  the diffusion boundary  
l ayer ,  

o~ Vo Oc O-'c (2.3) 
~,,. 77/ + - 7  T 6  --  D o,,'-' 

We make use of the yon lVIises t r a n s f o r m a t i o n s  to con-  
ve r t  f rom the v a r i a b l e s  r ,  0 to the va r i ab l e s  r 0 ,  
where  

~p = - - a / 4 U  ( r - -  a) ~ sin ~0o (2.4) 

Repeat ing the ana lys i s  of [1], we obtain the equat ion 

t 8 ", sin 20 ~1 (2.5) 

with the fol lowing boundary  condi t ions :  
at the su r face  of the sphere ,  

c (0, t) = O, t + O; (2.6) 

in  the reg ion  outs ide the boundary  layer ,  

lim c (~, t)  = c .  ; ( 2 . 7 )  

for the concen t r a t i on  d i s t r ibu t ion  in  the s t r e a m  
en t e r i ng  the neighborhood of the r u n - o n  point, 

c (~ ,  0 )  = co, ~ =~= 0 . ( 2 . 8 )  

Equation (2 .5)wi th  boundary  condi t ions  (2.6)-(2.8)  
has the solut ion obtained by Levich [1], 

c ( L t ) =  ~~ (1 ~.", 

o 

The r a n g e  of appl icabi l i ty  of Eq. (2.2), and t h e r e -  
fore  of solut ion (2.9), i s  defined by the condit ion 
3c / Or >> c o / R .  which is  fulfi l led,  as we see d i rec t ly  
f rom Eqs.  (2.9), i f  7r - 0 >> p - l / 3  

The p r inc ipa l  t e r m s  of convect ive  diffusion equation 
(2.1} in  the domain  r - 0 >> P t/3 sa t i s fy  the following 
equat ion (whose fo rm is  that  of the heat  conduct ion equa-  
t ion,  

ac { O2c o~c ~ (2.10) U -O~ = D ~, ~ 7 + az~ ] 

at l a rge  d i s t ances  f rom the su r face  of the sphere  
(r >> a) (in C a r t e s i a n  coord ina tes  with the x -ax i s  d i -  
r ec ted  along the oncoming  s t r e a m ) .  

The a s sumpt ion  of a cons tan t  ve loc i ty  U can be 
jus t i f ied  by the fact  that  the c h a r a c t e r i s t i c  d is tance  
along the x - a x i s  along which the concen t ra t ion  v a r i e s  
is  (as wil l  be seen  f rom our  solut ion) on the o rde r  of 
a P t ~  s, i . e . ,  cons ide rab ly  l a r g e r  than the r ad ius  of the 
sphere  (the reg ion  in  which the s t r e a m  veloc i ty  differs  
m a r k e d l y  f rom U). 

The second as sumpt ion  made in  de r iv ing  Eq. (2o11} 
has to do with the condit ion ] U Oc / Ox [ ~ D [ O~c / Ox 2 I, 

whose fu l f i l lment  for  a monoton ica l ly  va ry ing  concen-  
t r a t i on  follows f rom the condi t ion P >> 1. 

If we had a boundary  condit ion for  Eq. (2.10), i . e . ,  
for c(0, y, z), we could wr i te  the solut ion of this  equa-  
t ion as 

c (x, g, z) = f c(O, g' ,  z ' ) G ( x ,  g - -  g' ,  z - -  z') dy 'dz ' ,  

a ( z ,  ,j, u I- (2.11) ex P L 4Dx ~ " 

The function c(0, y~, z ' )  can be de te rmined  as fol-  
lows.  Let us cons ide r  a conical  su r face  with the fixed 
angle e = %  ~- P-'/," The concen t ra t ion  on this  sur face  
i s  given by Lev ich ' s  f o r mu l a  (2.9) i f  we subs t i tu te  in  
i t  the value 0 = 7r - e 0 for  t .  To within t e r m s  of o rde r  
1 / P  we have t = to = 1/s n D a  ~ (3U) v~. Now, a s s u m i n g  
that  the concen t r a t i on  d i s t r ibu t ion  on the conical  s u r -  
face is  also defined by the angle %,  we let  P go to i n -  
f ini ty.  Convect ive diffusion equat ion (2.1) throughout  
the domain,  inc luding  the conical  sur face ,  then becomes  
the equat ion of convect ive  t r a n s f e r  

Oc vo Oe 
v" -~r + W - T O  = 0 .  (2.12) 

According to Eq. (2.12), the concentration distri- 

bution specified on the surface of the cone is carried 

inside along the streamlines. Thus, for P ~ ~ the 
concentration distribution inside the conical surface 
is given by expression (2.9) with t replaced by t 0, 

Expression (2.11) for P ~ ~ must tend to the same 

expression sufficiently far away from the surface of 
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the  s p h e r e  (x >>a). This  i m p l i e s  tha t  

= . a . 1 4 )  

F o r  su f f i c i en t ly  l a r g e  x, e x p r e s s i o n  (2.11) with 
bounda ry  condi t ion  (2.14) can  be w r i t t e n  a s  

c(x,y,z)  .~ t G(x,x,z) l l r , ( l  ~,a) 
~o ~ -  r ( % )  N - ' - ~ o  • 

• t + ~ (yy' + z z ' ) - -  

e 
4Dx (y'~ @ z'~) @ ' " "} dy'dz' ,  

~o 

F ( + , x )  l e-~u-%du. (2.15) 

The second  t e r m  in b r a c e s  c o n t r i b u t e s  nothing to 
the  i n t e g r a l  b e c a u s e  of  the  o d d n e s s  of the  i n t e g r a n d .  
The con t r ibu t ion  of the  t h i r d  t e r m  i s  s m a l l  i f  x >> 
>> y2U/D.  But the  quant i ty  y ,  ~ (9 t ) i /3U-l /~ .  It i s  
t h e r e f o r e  n e c e s s a r y  tha t  x ~ (9t0)v~ / D ~ aPv. in  
o r d e r  fo r  the  c o n c e n t r a t i o n  d i s t r i b u t i o n  in  the  di f fus ion 
wake  to co inc ide  with  the  concen t r a t i on  d i s t r i b u t i on  due 
to the  point  s o u r c e  

(2.16) 

w Now l e t  us  c o n s i d e r  convec t ive  d i f fus ion in  a 
s t r e a m  flowing p a s t  an a r r a y  of s p h e r e s  s i tua ted  at  the  
nodes  of a cubic  l a t t i c e  with the  p e r i o d  b >> a P  ~/~ . Out-  
s ide  the  bounda ry  d i f fus ion l a y e r s  the  concen t r a t i on  
d i s t r i bu t i on  i s  d e t e r m i n e d  by the  di f fus ion w a k e s  of a l l  
the  s p h e r e s  having (in a c c o r d a n c e  with w the f o r m  of  
di f fus ion w a k e s  due to po in t  s o u r c e s .  Due to the p e r i -  
od ic i ty  of the  c o n c e n t r a t i o n  d i s t r i b u t i o n  in the p lane  
p e r p e n d i c u l a r  to the  s t r e a m  (x = const) ,  i t  i s  suf f ic ient  
to c o n s i d e r  the  s t r e a m  in the  ne ighborhood  of  the  s p h e r e  
(kb, 0, 0), 

X - 1  

c o ~ t t  I 
? I : O  

x,,' = x - -  nb, gin' = Y - -  mb, z~' = z - -  lb.  (3.1) 

The cons tan t  A n can  be d e t e r m i n e d  f r o m  the  cond i -  
t ion tha t  the  d i f f e r e n c e  be tween  the  f luxes  of  the  d i s -  
solved m a t e r i a l  th rough  the  p l a n e s  x = x 1 and x = x2, 
of which one i s  t aken  in  f ron t  of, and the  o t h e r  behind,  
the  k - t h  s p h e r e  (a <~ kb - x i << b, a << x2 - kb << b) 
i s  equal  to the  d i f fus ion f lux on the  s p h e r e s  ly ing  i n s ide  
the  l a y e r  j u s t  def ined .  This  i m p l i e s  tha t  

c o  

~ )  2updp = 4uDcoaA~, (3.2) Ix = coUA~: V t exp ( - -  ~:p~ 

w h e r e  I k i s  the  to ta l  d i f fus ion f lux on the s u r f a c e  of 
the  k - t h  s p h e r e .  

We can compute  Ik  by c o n s i d e r i n g  the equat ion of 
convec t ive  d i f fus ion  in the  bounda ry  l a y e r  n e a r  the 
s u r f a c e  of the  k - t h  s p h e r e  (2.3). 

The a p p r o p r i a t e  bounda ry  cond i t ions  can  be ob ta ined  
from Eq. (3.1). 

The concen t r a t i on  d i s t r i b u t i o n  n e a r  the  s u r f a c e  of 
the  k - t h  s p h e r e  ou t s ide  the  d i f fus ion bounda ry  l a y e r  i s  
p roduced  by the d i f fus ion  wakes  of a l l  the  s p h e r e s  in 
the  s y s t e m  s i tua ted  to the  le f t  of  the  p lane  x = bk.  The 
p r i n c i p a l  r o l e  in  the  sum i s  p l ayed  by the t e r m  a s s o c i -  
a ted  with the  (k - 1)- th  s p h e r e .  But s ince  the  l a t t i ce  
p e r i o d  b i s  much l a r g e r  than aP 1/3, the  diffusion wake 
of  the  (k - 1)- th  s p h e r e  has  a t r a n s v e r s e  width c o n s i d -  
e r a b l y  l a r g e r  than  a P  -1/3, i . e . ,  l a r g e r  than the e f fec -  
t i ve  t h i c k n e s s  of  the  d i f fus ion bounda ry  l a y e r .  The con-  
c e n t r a t i o n  changes  m a r k e d l y  in the  longi tud ina l  d i r e c -  
t ion in  the d i f fus ion wake  at  d i s t a n c e  aP i /~  >> a .  In view 
of  a l l  t h e s e  c o n s i d e r a t i o n s ,  the c onc e n t r a t i on  of  the  
s t r e a m  flowing p a s t  the  k - t h  s p h e r e  in the  r e g i o n  ou t -  
s ide  the  d i f fus ion bounda ry  l a y e r  can  be c o n s i d e r e d  
equal  to the  concen t r a t i on  which would be p roduced  by 
a l l  the  d i f fus ion wakes  at  the k - t h  node of  the  l a t t i c e .  
Hence,  

lira c (~, t) = cx, c (~, 0) = ct~, ~ 4= 0, 

X - 1  

C X - -  --  -- 1 - -  exp co ~ 4D i 

~ 0  m ,  l 

(3.3) 

We have  t h e r e f o r e  r e duc e d  the p r o b l e m  to tha t  of  
Levich  [1]. The c o n c e n t r a t i o n  d i s t r i b u t i o n  in the  diffu- 
s ion  bounda ry  l a y e r  i s  def ined by f o r m u l a  (2.9) wi th  c o 
r e p l a c e d  by c k .  The d i f fus ion  f lux de ns i t y  on the s u r -  
face  of the  k - t h  s p h e r e  i s  

j .D Oc D(3U) 'h /3\'/8 . = = 

The to ta l  d i f fus ion f lux on the su r f a c e  of the  k - th  
sphe re  i s  

Ix = 2r~a ~ i j sin 0 dO = 4nD~bc~, 
0 

0 ( 3 . 5 )  

F r o m  r e l a t i o n s  (3.2) and (3.5) we in fe r  tha t  

A~ = ~bcx / aco. (3.6) 

We t h e r e f o r e  have  the fol lowing r e c u r r e n c e  r e l a t i o n  
fo r  the  c onc e n t r a t i on  in  the  ne ighborhood  of the  k - t h  
l a t t i c e  node:  

- -  (~--, ,)co,~l exp TD (~-- ,~ ~" (3 ~ 
n = o  �9 , 

Making use  of  the  the ta  funct ion ~s(z I ~) def ined in 
[51, 

o~(oI~)= ~ ~' . . . .  ~ (3.8) 

we can r e w r i t e  e x p r e s s i o n  (3.7) as  

I ck = co - -  ~ ,  ~ -~  b (k - ,,-UJ 
n ~ 0  

(L -- Ub~ ~ (3,9) 
-- 4~D / " 

F o r  k >> 1 Eq.  (3.9) i s  equ iva len t  to the  i n t e g r a l  
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e q u a t i o n  

a:-b 

c(x) = c o - i  0: (0 ,ldx'" (3.10) 
0 

I n  t h e  r a n g e  x << L ,  n e g l e c t i n g  t e r m s  o f  o r d e r  

e - l r L / x  a n d  a s s u m i n g  t h a t  X << 1,  w e  o b t a i n  t h e  f o l l o w -  

i n g  s o l u t i o n  o f  E q .  ( 3 . 10 ) :  

(3.11) 

I f  x >> L ,  t h e n ,  u s i n g  t h e  i m a g i n a r y  J a e o b i  t r a n s -  

f o r m  

(3.12) 

a n d  n e g l e c t i n g  t e r m s  o f  o r d e r  e - ~ ,  w e  c a n  r e p l a c e  

E q .  ( 3 . 1 0 )  b y  t h e  s i m p l e r  e q u a t i o n  

x - L  x -b  
;~ c (x') ,~x' 

c ( x ) = c : ' - - W -  i c ( x ' ) d x ' - ) ~  i x--~' "' 

U x - L  

w h o s e  s o l u t i o n  i s  

(3.13) 

c(x) = ( t 4 _ ~ , l n L ) - l e _ X ( ~ : _ g ) / c  . ( 3 . 14 )  
Co 

Thus, the concentration of the oncoming stream in the neighborhood 

of the lat t ice nodes varies logari thmically for x << L and decreases ex-  
ponentially for x >> L. 

As we see from gq. (3.1), at distances x ~ L the effective width of 
the diffusion wake is comparable with the latt ice period b. The con-  
centration distribution in the range x << L is therefore close to that 
which arises in flow past a single chain in an infinite medium.  The 
effect of neighboring chains is not yet significant. For x >> L the solu- 
tion of the problem obtained in the first approximation in the small 

parameter I becomes the solution for spheres chaotical ly distributed 
in space. In fact, the equation for the average concentration in a re-  
gion considerably larger than b 3 is described by the equation of con-  
vective transfer with absorption {for P >> 1 the diffusion flux for the 
average concentration is n'egligibly small  as compared with the con-  
vective flux), 

Ldc / dx = --  ~,c (3.15) 

whose solution for x >> L clearly coincides with Eq. (3.14) to within 
a constant factor. 

However, the range of applicability of this solution in the case of 
chaotically distributed spheres is x >> b. If the spheres form chains, 
then it is only applicable for x >> L. In the range b << x << L the 
character of concentration variation in the neighborhood of spheres 
homogeneously distributed in space and of spheres arranged in chains 
differs quali tatively.  

The authors are grateful to V. G. Levich and V. S. Krylov for 
their comments .  
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